首席教师
首席教师
发布于 2024-04-15 / 1371 阅读
0
0

《三角函数之歌》

Odds will change but Evens are conserved, Notations get depend on where they are:奇变偶不变,符号看象限。

(注:上述视频为翻唱,原版链接为:https://www.bilibili.com/video/BV13f4y127mM)

一、歌词

When you first study math about 1,2,3,4
当你初学数学中的1,2,3,4

First study equation about X,Y,Z,T
初学方程中的 X,Y,Z,T

It will help you to think in a logical way
它将帮助你进行逻辑思考

When you sing sine, cosine, cosine, tangent
当你唱起正弦,余弦,余弦,正切

Sine, cosine, tangent, cotangent
正弦,余弦,正切,余切

Sine, cosine, secant, cosecant
正弦,余弦,正割,余割

Let's sing a song about trig-functions
让我们唱起三角函数的歌谣吧

(一)化简一(上世纪被错翻译为“诱导”)

\begin{cases} sin(2π+α)=sinα \\ cos(2π+α)=cosα \\ tan(2π+α)=tanα \end{cases}

Which is induction formula 1, and induction formula 2
这是诱导公式归类1,下面是诱导公式归类2

(二)化简二

\begin{cases} sin(π+α)=-sinα \\ cos(π+α)=-cosα \\ tan(π+α)=tanα \\ sin(π-α)=sinα \\ cos(π-α)=-cosα \\ tan(π-α)=-tanα \end{cases}

These are all those "name don't change"
这些均为“函数名不变”

As pi goes to half pi the difference shall be huge
π成为\dfrac{π}{2}是变化会很大

\begin{cases} sin(\dfrac{π}{2}+α)=cosα \\\\ sin(\dfrac{π}{2}-α)=cosα \\\\ cos(\dfrac{π}{2}+α)=-sinα \\\\ cos(\dfrac{π}{2}-α)=sinα \\\\ tan(\dfrac{π}{2}+α)=-cotα \\\\ tan(\dfrac{π}{2}-α)=cotα \end{cases}

That is to say the odds will change, evens are conserved
这就是说 :奇变偶不变

The notations that they get depend on where they are
符号看象限


But no matter where you are
但不论你在哪

I've gotta say that
我将会说

If you were my sine curve, I'd be your cosine curve
你若为正弦曲线,我愿做余弦曲线

I'll be your derivative, you'll be my negative one
我将为你的导数,你将为我负导数

As you change you amplitude, I change my phase
当你改变振幅,我改变相位

We can oscillate freely in the external space
我们可在外界空间自由震荡

As we change our period and costant at hand
当我们改变周期和手边常数

We travel from the origin to infinity
我们从原点驶向无尽

It's you sine, and you cosine
是你,正弦,余弦

Who make charming music around the world
创造了世间动人的音乐

It's you tangent, cotangent
是你,正切,余切

Who proclaim the true meaning of centrosymmetry
揭示了中心对称的真谛

B BOX……

You wanna measure width of a river, height of a tower
你想测量河宽及塔高

You scratch your head which cost you more than an hour
你抓耳挠腮一个多小时也想不出

You don't need to ask any "gods" or" master" for help
你无需向神或大佬们请教

This group of formulas are gonna help you solve
这一组公式将帮你解决

(三)两角和差

\begin{cases} sin(α+β)=sinα·cosβ+cosα·sinβ \\ cos(α+β)=cosα·cosβ-sinα·sinβ \\ tan(α+β)=\dfrac{tanα+tanβ}{1-tanα·tanβ} \\ sin(α-β)=sinα·cosβ-cosα·sinβ \\ cos(α-β)=cosα·cosβ+sinα·sinβ \\ tan(α-β)=\dfrac{tanα-tanβ}{1+tanα·tanβ} \end{cases}

As you come across a right triangle you fell easy to solve
当你遇到直角三角形很容易解

But an obtuse trianges gonna make you feel confused
但钝角三角形使你感到困惑

Don't worry about what you do
无须担心

There are always means to solve
总有解决方法

As long as you master the sine cosine law
只要你掌握了正余弦定理

At this moment I've got nothing to say
此刻我无以言表

As trig-functions rain down upon me
当时三角函数犹雨点般落向我

At this moment I've got nothing to say
此刻我无以言表

Let's sing a song about trig-functions
让我们唱起三角函数歌谣吧

Long live the trigonometric functions
三角函数万岁

二、其余公式

(四)正余弦公式

αααβββγγγcccaaabbbAAABBBCCC

1. 正弦

\dfrac{a}{sinA}=\dfrac{b}{sinB}=\dfrac{c}{sinC}=2R

2. 余弦

(1) 标准公式

a^2=b^2+c^2-2bc\,cos\alpha
b^2=a^2+c^2-2ac\,cos\beta
c^2=a^2+b^2-2ab\,cos\gamma

(当\gamma为90°时,cos\gamma=0,余弦定理可简化为c^2=a^2+b^2,即勾股定理)

(2) 角元形式

cos\alpha=\dfrac{sin^2\beta+sin^2\gamma-sin^2\alpha}{2sin\beta sin\gamma}
cos\beta=\dfrac{sin^2\alpha+sin^2\gamma-sin^2\beta}{2sin\alpha sin\gamma}
cos\gamma=\dfrac{sin^2\alpha+sin^2\beta-sin^2\gamma}{2sin\alpha sin\beta}

(五)二倍角公式

1. 正弦

sin2\alpha=2sin\alpha cos\alpha

2. 余弦

\begin{aligned} cos2\alpha&=2cos^2\alpha-1 \\ &=1-2sin^2\alpha \\ &=cos^2\alpha-sin^2\alpha \\ &=\dfrac{1-tan^2\alpha}{1+tan^2\alpha} \end{aligned}

3. 正切

\begin{aligned} tan2\alpha&=\dfrac{2tan\alpha}{1-tan^2\alpha}=\dfrac{2cot\alpha}{cot^2\alpha-1}=\dfrac{2}{cot\alpha-tan\alpha} \end{aligned}

三、乐谱

X: 24 T: Trigonometric Functions C: 原唱:映射者/天儿 S: ... M: 6/8 L: 1/8 Q: 3/8=-1 R: (还未收录,敬请期待,以下仅示例) K: Em |:"Em"EEE E2G|"C7"_B2A G2F|"Em"EEE E2G|\ "C7"_B2A "B7"=B3|"Em"EEE E2G| "C7"_B2A G2F|"Em"GFE "D (Bm7)"F2D|\ 1"Em"E3-E3:|2"Em"E3-E2B|:"Em"e2e gfe| "G"g2ab3|"Em"gfeg2e|"D"fedB2A|"Em"e2e gfe|\ "G"g2ab3|"Em"gfe"D"f2d|"Em"e3-e3:|

评论